Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Roberto Artali,^a* Gabriella Bombieri^a and Nuccio Bertazzi^b

^aIstituto di Chimica Farmaceutica, Universitá di Milano, Viale Abruzzi 42, 20131 Milano, Italy, and ^bDipartimento di Chimica Inorganica e Analitica 'S. Cannizzaro', Universitá di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy

Correspondence e-mail: roberto.artali@tiscali.it

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.039 wR factor = 0.100 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetramethylammonium chlorodiphenylthiocyanatoantimonate(III)

The crystal structure of the title compound, $(C_4H_{12}N)$ -[Sb(C₆H₅)₂Cl(NCS)], contains two cations and two anions in the asymmetric unit. The Sb atom exhibits a distorted pseudotrigonal–bipyramidal coordination, with the phenyl groups and the lone pair of electrons in equatorial positions and Nbonded thiocyanate and Cl⁻ ligands in axial positions. Received 21 November 2005 Accepted 23 November 2005 Online 30 November 2005

Comment

There are only a few examples in the literature of diorganoantimonate(III) anionic complex species, such as diphenylantimony complexes with different cations, e.g. (Me_4N) [Ph₂SbCl₂] (Hall & Sowerby, 1988), [(Cp)₂Co]-[Ph₂SbCl₂] (Calderazzo et al., 1991) and (Et₄N)[Ph₂SbI₂] (Sheldrick & Martin, 1991), where the anions have substantially the same distorted pseudo-trigonal-bipyramidal coordination around Sb, with phenyl groups in the equatorial positions and halides in the two axial positions. The compound K[Ph₂Sb(SCN)₂] has also been characterized and (on the basis of IR spectroscopic results) probably contains monomeric anions having both N- and S-bonded thiocyanate groups (Forster et al., 1995a). We succeeded in the preparation of the title mixed chloride-thiocyanate diphenyl-antimony(III) monomeric anionic complex, (I), and its crystal structure is reported here.

The anion of (I) has a pseudo-trigonal-bipyramidal structure, with the phenyl groups in equatorial positions and Cl⁻ and thiocyanate ions in the two axial positions. The thiocyanate groups in the two independent anions are N-bonded in a monodentate fashion, with angles at C1 and C1*a* of 179.1 (5) and 178.8 (5)°, respectively. The C-N bond lengths are short [C1-N1 = 1.117 (7) Å and C1*a*-N1*a* = 1.081 (8) Å] and close to the values for a triple bond (C=N 1.16 Å and C=N = 1.30 Å; Emsley, 1991), whereas the S1-C1 and S1*a*-C1*a* bond lengths of 1.617 (5) and 1.625 (6) Å, respectively, are closer to the value observed for C=S double bonds (*ca*

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1

A view of the two independent cations and anions of (I), with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50%probability level. H atoms have been omitted.

Figure 2

A packing diagram for (I), viewed approximately down the b axis. H atoms have been omitted.

1.55 Å) than that for single bonds (*ca* 1.82 Å; Emsley *et al.*, 1991). The angles at the coordinated N atoms are significantly different, at 154.6 (4)° for Sb1-N1-C1 and 162.1 (5)° for Sb2-N1*a*-C1*a*, while those between Cl⁻ and thiocyanate are 178.7 (1) and 170.1 (1)° for Cl1-Sb1-N1 and Cl1*a*-Sb2-N1*a*, respectively. The Sb-C bond distances of 2.143 (4) and 2.145 (5) Å are in agreement with those found in the polymeric structure of Ph₂Sb(NCS) [2.133 (6) and 2.143 (6) Å; Forster *et al.*, 1995*b*], whereas the Sb-N distances of 2.365 (5) and 2.355 (6) Å are at the upper limit of those found for the bridging thiocyanates in the same compound [2.304 (5), 2.273 (6) and 2.364 (6) Å].

Experimental

Ph₂SbCl was obtained by the reorganization in the absence of solvent of a Ph₃Sb–SbCl₃ 2:1 molar ratio mixture (Nunn *et al.*, 1983). The

resulting crude viscous yellow oil (3.60 g, nominally 11.5 mmol) was dissolved in absolute ethanol (50 ml). After filtration, the resulting clear solution (10 ml) was treated with (Me₄N)NCS (0.32 g, 2.42 mmol; Bertazzi & Barbieri, 1969) in absolute ethanol (20 ml). After allowing the reaction vessel to stand at room temperature for 3 d, small white crystals of (I) were obtained. These were recrystallized from absolute EtOH (m.p. 416–418 K). Analysis, found: C 46.10, H 5.15, N 6.45; calculated for $C_{17}H_{22}N_2SCISb$: C 46.03, H 5.00, N 6.31; IR (cm⁻¹, Nujoll): 2045 (*vs*, *v* CN), 470 (*w*, δ NCS).

Crystal data

 $\begin{array}{l} (C_4H_{12}N)[Sb(C_6H_5)_2Cl(NCS)]\\ M_r = 443.65\\ Triclinic, P\overline{1}\\ a = 11.245 (2) Å\\ b = 12.354 (3) Å\\ c = 15.226 (3) Å\\ \alpha = 112.05 (2)^{\circ}\\ \beta = 92.83 (3)^{\circ}\\ \gamma = 86.44 (3)^{\circ}\\ V = 1955.9 (8) Å^3 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.546$, $T_{max} = 0.648$ 7524 measured reflections 7175 independent reflections 6983 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.100$ S = 1.297175 reflections 405 parameters Z = 4 $D_x = 1.507 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25 reflections $\theta = 3.2-26^{\circ}$ $\mu = 1.65 \text{ mm}^{-1}$ T = 293 (2) K Prism, white $0.36 \times 0.32 \times 0.26 \text{ mm}$

```
\begin{aligned} R_{\text{int}} &= 0.030\\ \theta_{\text{max}} &= 26.0^{\circ}\\ h &= -13 \rightarrow 13\\ k &= -15 \rightarrow 14\\ l &= 0 \rightarrow 18\\ 3 \text{ standard reflections}\\ \text{frequency: 180 min}\\ \text{intensity decay: none} \end{aligned}
```

```
H-atom parameters constrained

w = 1/[\sigma^2(F_o^2) + 3.4332P]

where P = (F_o^2 + 2F_c^2)/3

(\Delta/\sigma)_{max} = 0.010

\Delta\rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}

\Delta\rho_{min} = -0.70 \text{ e } \text{\AA}^{-3}
```

Table 1

Selected geometric parameters (Å, °).

Sb1-C8	2.143 (4)	Sb2-C2a	2.143 (5)
Sb1-C2	2.145 (5)	Sb2-C8a	2.147 (4)
Sb1-N1	2.365 (5)	Sb2-N1a	2.355 (6)
Sb1-Cl1	2.5981 (15)	Sb2-Cl1a	2.6105 (15)
S1-C1	1.617 (5)	S1a-C1a	1.625 (5)
N1-C1	1.117 (6)	N1a-C1a	1.080(7)
C8-Sb1-C2	97.84 (17)	C2a-Sb2-C8a	98.31 (17)
C8-Sb1-N1	84.25 (17)	C2a-Sb2-N1a	86.1 (2)
C2-Sb1-N1	86.19 (17)	C8a-Sb2-N1a	84.23 (18)
C8-Sb1-Cl1	88.83 (12)	C2a-Sb2-Cl1a	88.35 (13)
C2-Sb1-Cl1	88.66 (12)	C8a-Sb2-Cl1a	88.41 (12)
N1-Sb1-Cl1	170.74 (12)	N1a-Sb2-Cl1a	170.06 (14)
C1-N1-Sb1	154.6 (4)	C1a-N1a-Sb2	162.1 (5)
N1-C1-S1	179.1 (5)	N1a-C1a-S1a	178.8 (5)

H atoms were treated as riding, with Csp^3 -H 0.96 and Csp^2 -H 0.93 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD-4* (Harms & Wocadlo, 1995), and *PSI* and *EAC* in *CAD-4 EXPRESS*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular

graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Italian MIUR and Universitá di Palermo for financial support, and Bracco Imaging SpA for a grant to RA.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bertazzi, N. & Barbieri, R. (1969). Inorg. Nucl. Chem. Lett. 5, 591-595.
- Calderazzo, F., Marchetti, F. & Ungari, F. (1991). *Gazz. Chim. Ital.* **121**, 93–100. Emsley, J. (1991). *The Elements*, 2nd ed. Oxford: Clarendon Press.

- Enraf-Nonius (1994). *CAD-4 EXPRESS*. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Forster, G. E., Begley, M. J. & Sowerby, D. B. (1995a). J. Chem. Soc. Dalton Trans. pp. 377–382.
- Forster, G. E., Begley, M. J. & Sowerby, D. B. (1995b). J. Chem. Soc. Dalton Trans. pp. 1173–1176.
- Hall, M. & Sowerby, D. B. (1988). J. Organomet. Chem. 347, 59-70.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Nunn, M., Sowerby, D. B. & Wesolek, D. M. (1983). J. Organomet. Chem. 251, C45–C46.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, W. S. & Martin, C. Z. (1991). Z. Naturforsch. Teil B, 46, 639-646.